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FLUID MECHANICS. 

Introduction 

Fluid mechanics is that discipline within the broad field of applied mechanics concerned with the 

behavior of liquids and gases at rest or in motion. This field of mechanics obviously 

encompasses a vast array of problems that may vary from the study of blood flow in the 

capillaries 1which are only a few microns in diameter2 to the flow of crude oil across Alaska 

through an 800-mile-long, 4-ft-diameter pipe. Fluid mechanics principles are needed to explain 

why airplanes are made streamlined with smooth surfaces for the most efficient flight, whereas 

golf balls are made with rough surfaces 1dimpled2 to increase their efficiency. Numerous 

interesting questions can be answered by using relatively simple fluid mechanics ideas. For 

example: 

 How can a rocket generate thrust without having any air to push against in outer space? 

 Why can’t you hear a supersonic airplane until it has gone past you? 

 How can a river flow downstream with a significant velocity even though the slope of 

the surface is so small that it could not be detected with an ordinary level? 

 How can information obtained from model airplanes be used to design the real thing? 

 Why does a stream of water from a faucet sometimes appear to have a smooth surface, 

but sometimes a rough surface? 

 How much greater gas mileage can be obtained by improved aerodynamic design of cars 

and trucks? 

The list of applications and questions goes on and on—but you get the point; fluid mechanics is a 

very important, practical subject. It is very likely that during your career as an engineer you will 

be involved in the analysis and design of systems that require a good understanding of fluid 

mechanics. It is hoped that this introductory text will provide a sound foundation of the 

fundamental aspects of fluid mechanics. 

Some Characteristics of Fluids. 
One of the first questions we need to explore is, What is a fluid? Or we might ask, What is the 

difference between a solid and a fluid? We have a general, vague idea of the difference. A solid 

is ―hard‖and not easily deformed, whereas a fluid is ―soft‖ and is easily deformed (we can 

readily move through air). Although quite descriptive, these casual observations of the 

differences between solids and fluids are not very satisfactory from a scientific or engineering 

point of view. A closer look at the molecular structure of materials reveals that matter that we 

commonly think of as a solid (steel, concrete, etc.) has densely spaced molecules with large 

intermolecular cohesive forces that allow the solid to maintain its shape, and to not be easily 

deformed. However, for matter that we normally think of as a liquid (water, oil, etc.), the 

molecules are spaced farther apart, the intermolecular forces are smaller than for solids, and the 

molecules have more freedom of movement. Thus, liquids can be easily deformed (but not easily 

compressed) and can be poured into containers or forced through a tube. Gases (air, oxygen, etc.) 



have even greater molecular spacing and freedom of motion with negligible cohesive 

intermolecular forces and as a consequence are easily deformed (and compressed) and will 

completely fill the volume of any container in which they are placed. Although the differences 

between solids and fluids can be explained qualitatively on the basis of molecular structure, a 

more specific distinction is based on how they deform under the action of an external load. 

Specifically, a fluid is defined as a substance that deforms continuously when acted on by a 

shearing stress of any magnitude. A shearing stress (force per unit area) is created whenever a 

tangential force acts on a surface. When common solids such as steel or other metals are acted on 

by a shearing stress, they will initially deform (usually a very small deformation), but they will 

not continuously deform (flow). However, common fluids such as water, oil, and air satisfy the 

definition of a fluid—that is, they will flow when acted on by a shearing stress. Some materials, 

such as slurries, tar, putty, toothpaste, and so on, are not easily classified since they will behave 

as a solid if the applied shearing stress is small, but if the stress exceeds some critical value, the 

substance will flow. The study of such materials is called rheology and does not fall within the 

province of classical fluid mechanics. Thus, all the fluids we will be concerned with in this text 

will conform to the definition of a fluid given previously. 

Analysis of Fluid Behavior 
The study of fluid mechanics involves the same fundamental laws you have encountered in 

physics and other mechanics courses. These laws include Newton’s laws of motion, conservation 

of mass, and the first and second laws of thermodynamics. Thus, there are strong similarities 

between the general approach to fluid mechanics and to rigid-body and deformable body solid 

mechanics. This is indeed helpful since many of the concepts and techniques of analysis used in 

fluid mechanics will be ones you have encountered before in other courses. The broad subject of 

fluid mechanics can be generally subdivided into fluid statics, in which the fluid is at rest, and 

fluid dynamics, in which the fluid is moving. In the following chapters we will consider both of 

these areas in detail. Before we can proceed, however, it will be necessary to define and discuss 

certain fluid properties that are intimately related to fluid behavior. It is obvious that different 

fluids can have grossly different characteristics. For example, gases are light and compressible, 

whereas liquids are heavy (by comparison) and relatively incompressible. A syrup flows slowly 

from a container, but water flows rapidly when poured from the same container. To quantify 

these differences certain fluid properties are used. In the following several sections the properties 

that play an important role in the analysis of fluid behavior are considered. 

Pressure at a Point 
The term pressure is used to indicate the normal force per unit area at a given point acting on a 

given plane within the fluid mass of interest. A question that immediately arises is how the 

pressure at a point varies with the orientation of the plane passing through the point. To answer 

this question, consider the free-body diagram, illustrated in Fig. 1, that was obtained by 

removing a small triangular wedge of fluid from some arbitrary location within a fluid mass. 

Since we are considering the situation in which there are no shearing stresses, the only external 

forces acting on the wedge are due to the pressure and the weight. For simplicity the forces in the 

x direction are not shown, and the z axis is taken as the vertical axis so the weight acts in the 

negative z direction. Although we are primarily interested in fluids at rest, to make the analysis 

as general as possible, we will allow the fluid element to have accelerated motion. The 

assumption of zero shearing stresses will still be valid so long as the fluid element moves as a 

rigid body; that is, there is no relative motion between adjacent elements. 



                                     
                                Fig.1.Forces on an arbitrary wedged-shape element of fluid. 

The equations of motion (Newton’s second law, F = ma) in the y and z directions are, 

respectively, 
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Where ps, py, and pz are the average pressures on the faces, and ρ are the fluid specific ay, az 

multiplied by an appropriate area to obtain the force generated by the pressure. It follows from 

the geometry that 

 

                               , so that the equations of motion can be rewritten as 

                                                                                     
  

 
  

 

                                                                                (      )
  

 
  

 

Since we are really interested in what is happening at a point, we take the limit as δx, δy, and δz 

approach zero (while maintaining the angle θ), and it follows that py = ps,   pz = ps or ps = py = pz. 

The angle was arbitrarily chosen so we can conclude that the pressure at a point in a fluid at rest, 

or in motion, is independent of direction as long as there are no shearing stresses present. This 

important result is known as Pascal’s law named in honor of Blaise Pascal (1623–1662), a 

French mathematician who made important contributions in the field of hydrostatics.  

Basic Equation for Pressure Field 
Although we have answered the question of how the pressure at a point varies with direction, we 

are now faced with an equally important question—how does the pressure in a fluid in which 

there are no shearing stresses vary from point to point? To answer this question consider a small 

rectangular element of fluid removed from some arbitrary position within the mass of fluid of 

interest as illustrated in Fig. 2. There are two types of forces acting on this element: surface 

forces due to the pressure, and a body force equal to the weight of the element. Other possible 

types of body forces, such as those due to magnetic fields, will not be considered in this text. If 

we let the pressure at the center of the element be designated as p, then the average pressure on 

the various faces can be expressed in terms of p and its derivatives as shown in Fig. 2. We are 



actually using a Taylor series expansion of the pressure at the element center to approximate the 

pressures a short distance away and neglecting higher order terms that will vanish as we let δx, 

δy, and δz approach zero. For simplicity the surface forces in the x direction are not shown. The 

resultant surface force in the y direction is  
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Similarly, for the x and z directions the resultant surface forces are 

                              
  

  
                      

  

  
                 

 

                                
Fig 2. Surface and body forces acting on small fluid element. 

The resultant surface force acting on the element can be expressed in vector form as 
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Where  ̂,  ̂ and  ̂ are the unit vectors along the coordinate axes shown in Fig. 2. The group of 

terms in parentheses in Eq. 1 represents in vector form the pressure gradient and can be written 

as 
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and the symbol   is the gradient or ―del‖ vector operator. Thus, the resultant surface force per 

unit volume can be expressed as 

                                                             
   

      
        

Since the z axis is vertical, the weight of the element is  

                                                                  o
W ̂ =          ̂  

where the negative sign indicates that the force due to the weight is downward (in the negative z 

direction). Newton’s second law, applied to the fluid element, can be expressed as 
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Where ∑   represents the resultant force acting on the element, a is the acceleration of the 

element, and δm is the element mass, which can be written as ρδxδyδz. It follows that 
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Equation 2. is the general equation of motion for a fluid in which there are no shearing stresses.  

 

Pressure Variation in a Fluid at Rest 
For a fluid at rest a = 0 and Eq. 2. reduces to 

       ̂      or in component form, 
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These equations show that the pressure does not depend on x or y. Thus, as we move from point 

to point in a horizontal plane 1any plane parallel to the x–y plane2, the pressure does not change. 

Since p depends only on z, the last of Eqs. 3 can be written as the ordinary differential equation 
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Equation 4 is the fundamental equation for fluids at rest and can be used to determine how 

pressure changes with elevation. This equation indicates that the pressure gradient in the vertical 

direction is negative; that is, the pressure decreases as we move upward in a fluid at rest. There is 

no requirement that    be a constant. Thus, it is valid for fluids with constant specific weight, 

such as liquids, as well as fluids whose specific weight may vary with elevation, such as air or 

other gases. However, to proceed with the integration of Eq. 4 it is necessary to stipulate how the 

specific weight varies with z. 

Incompressible Fluid 
Since the specific weight is equal to the product of fluid density and acceleration of gravity 

changes in are caused either by a change in or g. For most engineering applications the variation 

in g is negligible, so our main concern is with the possible variation in the fluid density. For 

liquids the variation in density is usually negligible, even over large vertical distances, so that the 

assumption of constant specific weight when dealing with liquids is a good one. For this 

instance, Eq. 4 can be directly integrated 
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Where           are pressures at the vertical elevations           as is illustrated in Fig. 3. 

Equation 5 can be written in the compact form 
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or    
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Fig. 3. Notation for pressure variation in a fluid at rest with a free surface. 

Where h is the distance,        which is the depth of fluid measured downward from the 

location of p2. This type of pressure distribution is commonly called a hydrostatic distribution, 

and Eq. 7 shows that in an incompressible fluid at rest the pressure varies linearly with depth. 

The pressure must increase with depth to ―hold up‖ the fluid above it. It can also be observed 

from Eq. 6 that the pressure difference between two points can be specified by the distance h 

since  

 

                                        
      

 
  

 

In this case h is called the pressure head and is interpreted as the height of a column of fluid of 

specific weight  required to give a pressure difference         . For example, a pressure 

difference of 10 psi can be specified in terms of pressure head as 23.1 ft of water( = 62.4 Ib/ft
3
) 

or 518 mm of Hg ( = 133 kN/m
2
). When one works with liquids there is often a free surface, as 

is illustrated in Fig. 3, and it is convenient to use this surface as a reference plane. The reference 

pressure po would correspond to the pressure acting on the free surface (which would frequently 



be atmospheric pressure), and thus if we let p2 = p0 in Eq. 7 it follows that the pressure p at any 

depth h below the free surface is given by the equation: 

                                                ……………………           8 

 

As is demonstrated by Eq. 7 or 8, the pressure in a homogeneous, incompressible fluid at rest 

depends on the depth of the fluid relative to some reference plane, and it is not influenced by the 

size or shape of the tank or container in which the fluid is held. Thus, in Fig. 4 the pressure is the 

same at all points along the line AB even though the container may have the very irregular shape 

shown in the figure. The actual value of the pressure along AB depends only on the depth, h, the 

surface pressure po, and the specific weight,, of the liquid in the container. 

 

 
Fig.4. Fluid equilibrium in a container of arbitrary shape. 

 

Operation of hydraulic devices 
The required equality of pressures at equal elevations throughout a system is important for the 

operation of hydraulic jacks, lifts, and presses, as well as hydraulic controls on aircraft and other 

types of heavy machinery. The fundamental idea behind such devices and systems is 

demonstrated in Fig. 5. A piston located at one end of a closed system filled with a liquid, such 

as oil, can be used to change the pressure throughout the system, and thus transmit an applied 

force F1 to a second piston where the resulting force F2 is Since the pressure p acting on the faces 

of both pistons is the same (the effect of elevation changes is usually negligible for this type of 

hydraulic device), it follows that F2 = (A2/A1) F1. The piston area A2 can be made much larger 

thanA1 and therefore a large mechanical advantage can be developed; that is, a small force 

applied at the smaller piston can be used to develop a large force at the larger piston. The applied 

force could be created manually through some type of mechanical device, such as a hydraulic 

jack, or through compressed air acting directly on the surface of the liquid, as is done in 

hydraulic lifts commonly found in service stations. 



                                    
Fig. 5. Transmission of fluid pressure. 

 

 

Compressible Fluid 
We normally think of gases such as air, oxygen, and nitrogen as being compressible fluids 

since the density of the gas can change significantly with changes in pressure and temperature. 

Thus, although Eq. 4 applies at a point in a gas, it is necessary to consider the possible variation 

in  before the equation can be integrated. However, as was discussed earlier, the specific 

weights of common gases are small when compared with those of liquids. For example, the 

specific weight of air at sea level and 60 
0
F is 0.0763 Ib/ft

3
, (12.014 N/m

3
) whereas the specific 

weight of water under the same conditions is 62.4 Ib/ft
3
, Since the specific weights of gases are 

comparatively small, it follows from Eq. 4 that the pressure gradient in the vertical direction is 

correspondingly small, and even over distances of several hundred feet the pressure will remain 

essentially constant for a gas. This means we can neglect the effect of elevation changes on the 

pressure in gases in tanks, pipes, and so forth in which the distances involved are small. For 

those situations in which the variations in heights are large, on the order of thousands of feet, 

attention must be given to the variation in the specific weight. As is described earlier, the 

equation of state for an ideal (or perfect) gas is 

 

                                                              P = ρRT 

Where p is the absolute pressure, R is the gas constant, and T is the absolute temperature. This 

relationship can be combined with Eq. 4 to give 
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Where g and R are assumed to be constant over the elevation change from z1 to z2. Although the 

acceleration of gravity, g, does vary with elevation, the variation is very small and g is usually 

assumed constant at some average value for the range of elevation involved. Before completing 

the integration, one must specify the nature of the variation of temperature with elevation. For 

example, if we assume that the temperature has a constant value over the range (isothermal 

conditions), it then follows from Eq. 9 that 
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This equation provides the desired pressure-elevation relationship for an isothermal layer. For 

non-isothermal conditions a similar procedure can be followed if the temperature-elevation 

relationship is known, as is discussed in the following section. 

Table 1. 

 
a
Acceleration of gravity at sea level = 9.807 m/s

2
  = 32.174 ft/s

2
. 

 

Example 1 

A mountain lake has an average temperature of and a maximum depth of 40 m. For a barometric 

pressure of 598 mm Hg, determine the absolute pressure (in pascals) at the deepest part of the 

lake. 

                                              
Fig. 6. Mercury barometer 

 

Solution 

The pressure in the lake at any depth, h, is given by the equation  

                                                                         
 

Where    is the pressure at the surface. Since we want the absolute pressure,    will be the local 

barometric pressure expressed in a consistent system of units; that is 
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This simple example illustrates the need for close attention to the units used in the calculation of 

pressure; that is, be sure to use a consistent unit system, and be careful not to add a pressure head 

(m) to a pressure (Pa). 

Pressure Variation in a Fluid with Rigid-Body Motion 

Although in this chapter we have been primarily concerned with fluids at rest, the general 

equation of motion (Eq. 2). 
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was developed for both fluids at rest and fluids in motion, with the only stipulation being that 

there were no shearing stresses present. Equation 2. in component form, based on rectangular 

coordinates with the positive z axis being vertically upward, can be expressed as 
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A general class of problems involving fluid motion in which there are no shearing stresses occurs 

when a mass of fluid undergoes rigid-body motion. For example, if a container of fluid 

accelerates along a straight path, the fluid will move as a rigid mass (after the initial sloshing 

motion has died out) with each particle having the same acceleration. Since there is no 

deformation, there will be no shearing stresses and, therefore, Eq. 2. applies. Similarly, if a fluid 

is contained in a tank that rotates about a fixed axis, the fluid will simply rotate with the tank as a 

rigid body, and again Eq. 2. can be applied to obtain the pressure distribution throughout the 

moving fluid. Specific results for these two cases (rigid-body uniform motion and rigid-body 

rotation) are developed in the following two sections. Although problems relating to fluids 

having rigid-body motion are not, strictly speaking, ―fluid statics‖ problems, they are included in 

this chapter because, as we will see, the analysis and resulting pressure relationships are similar 

to those for fluids at rest. 

 

Linear Motion 

We first consider an open container of a liquid that is translating along a straight path with a 

constant acceleration a as illustrated in Fig. 7. Since        it follows from the first of Eqs. 11 

that the pressure gradient in the x direction is zero (
  

  
). In the y and z directions  
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Fig. 7. Linear acceleration of a liquid with a free surface. 

The change in pressure between two closely spaced points located at y, z, and y + dy, z + dz can 

be expressed as 

    
  

  
    

  

  
    or in terms of the results from Eqs. 12 and 13 
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Along a line of constant pressure,       and therefore from Eq. 14 it follows that the slope of 

this line is given by the relationship 
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Along a free surface the pressure is constant, so that for the accelerating mass shown in Fig. 7 the 

free surface will be inclined if     . In addition, all lines of constant pressure will be parallel 

to the free surface as illustrated. For the special circumstance in which             which 

corresponds to the mass of fluid accelerating in the vertical direction, Eq. 15 indicates that the 

fluid surface will be horizontal. However, from Eq. 13 we see that the pressure distribution is not 

hydrostatic, but is given by the equation 
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For fluids of constant density this equation shows that the pressure will vary linearly with depth, 

but the variation is due to the combined effects of gravity and the externally induced 

acceleration,  (     ) , rather than simply the specific weight ρg. Thus, for example, the 

pressure along the bottom of a liquid-filled tank which is resting on the floor of an elevator that 

is accelerating upward will be increased over that which exists when the tank is at rest (or 

moving with a constant velocity). It is to be noted that for a freely falling fluid mass(      )  
the pressure gradients in all three coordinate directions are zero, which means that if the pressure 

surrounding the mass is zero, the pressure throughout will be zero. The pressure throughout a 

―blob‖ of orange juice floating in an orbiting space shuttle (a form of free fall) is zero. The only 

force holding the liquid together is surface tension. 

 

Example 2  

The cross section for the fuel tank of an experimental vehicle is shown in Fig.8. The rectangular 

tank is vented to the atmosphere, and a pressure transducer is located in its side as illustrated. 



During testing of the vehicle, the tank is subjected to a constant linear acceleration, (a) 

Determine an expression that relates and the pressure at the transducer for a fuel with a (b) What 

is the maximum acceleration that can occur before the fuel level drops below the transducer? 

Solution 

                              
Fig. 8 

 

(a) For a constant horizontal acceleration the fuel will move as a rigid body, and from Eq. 15 the 

slope of the fuel surface can be expressed as 

 

  

  
   

  

 
  

since        Thus, for some arbitrary    the change in depth,    of liquid on the right side of 

the tank can be found from the equation 
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Since there is no acceleration in the vertical, z, direction, the pressure along the wall varies 

hydrostatically as shown by Eq. 13. Thus, the pressure at the transducer is given by the 

relationship 

 

       
Where h is the depth of fuel above the transducer, and therefore 
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 ans.  

for             As written, p would be given in lb/ft
2
.  

(b) The limiting value for (when the fuel level reaches the transducer) can be found from the 

equation 
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and for standard acceleration of gravity 
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(         ⁄ )           ⁄   Ans. 

Note that the pressure in horizontal layers is not constant in this example since     ⁄  
          Thus, for example,          
 

Rigid-Body Rotation 

After an initial ―start-up‖ transient, a fluid contained in a tank that rotates with a constant angular 

velocity  about an axis as is shown in Fig. 9 will rotate with the tank as a rigid body. It is 

known from elementary particle dynamics that the acceleration of a fluid particle located at a 

distance r from the axis of rotation is equal in magnitude to r
2
 and the direction of the 

acceleration is toward the axis of rotation as is illustrated in the figure. Since the paths of the 

fluid particles are circular, it is convenient to use cylindrical polar coordinates r, θ and z, defined 

in the insert in Fig. 9. From the lecture, it will be observed that in terms of cylindrical 

coordinates the pressure gradient    can be expressed as 
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Thus, in terms of this coordinate system 
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and from Eq. 2.  

                              
  

  
         

  

  
        

  

  
       ……………….. 17 

 



 
Fig. 9. Rigid-body rotation of a liquid in a tank. 

 

These results show that for this type of rigid-body rotation, the pressure is a function of two 

variables r and z, and therefore the differential pressure is 
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Along a surface of constant pressure, such as the free surface,dp = 0 so that from Eq. 18 

(using      ) 

 

                                         
  

  
  

   

 
  

and, therefore, the equation for surfaces of constant pressure is 
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This equation reveals that these surfaces of constant pressure are parabolic as illustrated in 

Fig. 10. Integration of Eq. 18 yields 

∫       ∫       ∫    ,     or, 

 

                                         
     

 
              …………..20 

Where the constant of integration can be expressed in terms of a specified pressure at some 

arbitrary point        This result shows that the pressure varies with the distance from the axis of 

rotation, but at a fixed radius, the pressure varies hydrostatically in the vertical direction as 

shown in Fig. 10. 



 

 
Fig. 10. Pressure distribution in rotating liquid 

 

Example 3 

It has been suggested that the angular velocity,, of a rotating body or shaft can be measured by 

attaching an open cylinder of liquid, and measuring with some type of depth gage the change in 

the fluid level, H – h0, caused by the rotation of the fluid. Determine the relationship between 

this change in fluid level and the angular velocity. 

Solution 

 

 

 

 



 
Fig.11, Ex. 3 

 

 

The height, h, of the free surface above the tank bottom can be determined from Eq. 19, and it 

follows that 

   
    

  
      

The initial volume of fluid in the tank,      is equal to 

 

           
The volume of the fluid with the rotating tank can be found with the aid of the differential 

element shown in Fig.11 Ex. 3. This cylindrical shell is taken at some arbitrary radius, r, and its 

volume is 

             
The total volume is, therefore 
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Since the volume of the fluid in the tank must remain constant (assuming that none spills over 

the top), it follows that 

 

      
     

  
         or, 

       
    

  
    Ans. 

This is the relationship we were looking for. It shows that the change in depth could indeed be 

used to determine the rotational speed, although the relationship between the change in depth and 

speed is not a linear one. 



 

 

 

 


